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1. [18] In the real world, we are often faced with problems where the data follows the regression
function h(x). That is, for any input value x, the corresponding label is y = h(x) + ϵ, where ϵ
represents noise. Using the given data, we create M predictive models y1(x), y2(x), . . . , yM (x).
If HM (x) is defined as:

HM (x) =
1

M

M∑
i=1

yi(x),

prove that:

Ex

[
(HM (x)− h(x))2

]
≤ 1

M

M∑
i=1

Ex

[
(yi(x)− h(x))2

]
.

hint:Cauchy-Schwarz!

2. [20] Consider a standard linear regression setting where there exists a true parameter vector
θ∗ ∈ Rd×1 that generates outputs yi ∈ R from inputs xi ∈ Rd×1 as follows:

yi = θ∗Txi + ϵi, where ϵi ∼ N (0, σ2).

Suppose we have fixed the inputs x1, . . . , xn. We construct the matrix X by placing xi in the
i-th row (X ∈ Rn×d). The training error for a given parameter θ can be written in matrix form
as R̂(θ) = 1

n∥y − Xθ∥22. We define the statistical error of parameter θ, denoted as R(θ), as the
expectation of the training error over the randomness in y, that is:

R(θ) = Ey[R̂(θ)].

Since the design matrix X is fixed, the only source of randomness comes from ϵ. Let R∗ be the
statistical error corresponding to the true parameter θ∗, which generates the outputs y. Imagine
that the matrix X is full rank, and the OLS estimator is written as θ̂ = (XTX)−1XTy.
Prove the following:

(a) Show that
R(θ)−R∗ = ∥θ − θ∗∥2

Σ̂
,

where ∥θ − θ∗∥2
Σ̂
= (θ̂ − θ∗)T Σ̂(θ̂ − θ∗) and Σ̂ = XT X

n is the empirical covariance matrix.
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(b) Prove that the OLS estimator is unbiased. Additionally, show that the variance of the OLS
estimator θ̂ is:

var(θ̂) = E[(θ̂ − θ∗)(θ̂ − θ∗)T ] =
σ2

n
Σ̂−1.

3. [12] Consider a linear regression model where the cost function is given by:

J = ∥y − Xw∥22 + λwTw

where:

• y is the target vector,
• X is the feature matrix,
• w is the weight vector,
• λ is the regularization parameter,
• ∥ · ∥2 denotes the L2 norm.

(a) Explain what λwTw is and why we add it to the loss function. How does it work?
(b) Explain the importance of selecting an appropriate value for the regularization parameter

λ. What happens if we choose λ very large (i.e., λ → ∞) or very small (i.e., λ → 0)?
(c) Consider the general form of regularization:

J = ∥y − Xw∥22 + λr(w),

where r : Rd → R is the regularization function. Suppose for two weight vectors w1 =
[1, 0, 6]T and w2 = [−2, 3, 3]T , the squared error term ∥y−Xw∥22 is equal for both. Explain
which weight vector (w1 or w2) the model will prefer if we replace r(w) with each of the
following functions:

• r(w) = 1,
• r(w) =

∑d
i=1 |wi| (L1 regularization),

• r(w) =
∑d

i=1 |wi|2 (L2 regularization),
• r(w) = max(|w1|, |w2|, . . . , |wd|) (L∞ regularization).

(d) Suppose we are using Stochastic Gradient Descent (SGD) to optimize the cost func-
tion:

J = ∥y − Xw∥22 + λwTw.

Derive the update rule for the weight wi, using learning rate η and data point (x(j), y(j)) in
SGD.

4. [35] Answer the following quesitons.

(a) Suppose our samples are x = (0, 0, 1, 1, 0), from Ber(θ), where θ is unknown. Assume θ is
unrestricted; that is, θ ∈ (0, 1). What is the MLE for θ?

(b) Suppose we impose the restriction that θ ∈ {0.2, 0.5, 0.7}. What is the MLE for θ?
(c) Assume Θ is restricted as in part (b) (but now a random variable for MAP). Suppose we

have a (discrete) prior πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, and πΘ(0.7) = 0.89. What is the
MAP for θ?
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(d) Show that we can make the MAP whatever we like, by finding a prior over {0.2, 0.5, 0.7}
so that the MAP is 0.2, another so that it is 0.5, and another so that it is 0.7.

(e) Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to
get any value ∈ (0, 1), not just ones in a finite set such as {0.2, 0.5, 0.7}. So we need a
(continuous) prior distribution with range (0, 1) instead of our discrete one. We assign
Θ ∼ Beta(α, β) with parameters α, β > 0 and density

πΘ(θ) =
1

B(α, β)
θα−1(1− θ)β−1 for θ ∈ (0, 1).

Recall the mode of a W ∼ Beta(α, β) random variable is

α− 1

(α− 1) + (β − 1)

(the mode is the value with highest density arg maxw fW (w)).
Suppose x1, . . . , xn are iid from a Bernoulli distribution with unknown parameter. Recall
the MLE is k

n , where k =
∑

xi (the total number of successes). Show that the posterior
πΘ(θ | x) is proportional to Beta(k+α, n−k+β) distribution, and find the MAP estimator.

(f) Recall that Beta(1, 1) ≡ Unif(0, 1) (pretend we saw 1 − 1 heads and 1 − 1 tails ahead of
time). If we used this as the prior, how would the MLE and MAP compare?

(g) Since the posterior is also a Beta Distribution, we call Beta the conjugate prior to the
Bernoulli/Binomial distribution’s parameter p. Interpret α, β as to how they affect our
estimate. This is a really special property: if the prior distribution multiplied by the
likelihood results in a posterior distribution in the same family (with different parameters),
then we say that distribution is the conjugate prior to the distribution we are estimating.

(h) As the number of samples goes to infinity, what is the relationship between the MLE and
MAP? What does this say about our prior when n is small, or n is large?

(i) Which do you think is ”better”, MLE or MAP?

5. [15] Complete the attached notebook. You are permitted to use chatbots or other resources
for assistance, but you must ensure that you fully understand the code and implementations.
During the online sessions, you may be asked to explain specific functions, code lines, and your
overall approach. Be prepared to demonstrate your understanding in detail.
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